Synthesis of Large Macrocyclic Azacalix[*n*]pyridines (n = 6 - 9) and Their Complexation with Fullerenes C₆₀ and C₇₀

LETTERS 2008 Vol. 10, No. 12 2565–2568

ORGANIC

En-Xuan Zhang, De-Xian Wang, Qi-Yu Zheng, and Mei-Xiang Wang*

Beijing National Laboratory for Molecular Sciences, Laboratory of Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China mxwang@iccas.ac.cn

Received April 11, 2008

ABSTRACT

Large methylazacalix[*n*]pyridines (n = 6-9) were synthesized effectively from the Pd-catalyzed macrocyclic fragment coupling reactions between α, ω -dibrominated and α, ω -diaminated linear oligomers. As macrocyclic host molecules, they formed a 1:1 complex with fullerenes C₆₀ and C₇₀ with association constants ranging from 3 × 10⁴ to 1 × 10⁵ M⁻¹.

The design and the synthesis of novel and functional macrocyclic host molecules are the central theme in the study of supramolecular chemistry. Among various types of macrocyclic host molecules,¹ heteroatom-bridged calix(hetero)aromatics^{2–6} have attracted a fast-growing interest in recent years. In comparison with calix[*n*]arenes^{7–9} and calixheteroarenes such as calixpyrroles,¹⁰ calixpyridines,¹¹ and other calixaromatics,¹² in which the (hetero)arene units are linked by methylenes, introduction of heteroatoms into the bridging positions has generated a number of novel macrocyclic molecules including thia-,³ oxa-,⁴ and azacalix[*n*]arenes.⁵ On the basis of the fragment coupling strategy, for example, we have successfully synthesized azacalix[*m*]arene[*n*]pyridines (m = n = 2, 4),^{5d,e} azacalix[*n*]pyridines (n = 4, 5, 8, 10),^{5e,m} and aza- and/or oxa-calix[2]arene[2]triazines,^{4a,k,l,13} while

⁽¹⁾ Atwood, J. L.; Davies, J. E. D.; MacNicol, D. D.; Vögtle, F., Eds. *Comprehensive Supramolecular Chemistry*; Pregamon Press, NewYork, 1996; Vols. 1–10.

⁽²⁾ For a useful overview of heteroatom-bridged calixarenes, see: König, B.; Fonseca, M. H. *Eur. J. Inorg. Chem.* **2000**, 2303.

⁽³⁾ For a very recent review on thiacalixarenes, see: Morohashi, N.; Narumi, F.; Iki, N.; Hattori, T.; Miyano, S. *Chem. Rev.* **2006**, *106*, 5291.

⁽⁴⁾ For recent examples of oxygen-bridged calixaromatics, see: (a) Wang, M.-X.; Yang, H.-B. J. Am. Chem. Soc. 2004, 126, 15412. (b) Katz, J. L.; Feldman, M. B.; Conry, R. R. Org. Lett. 2005, 7, 91. (c) Katz, J. L.; Selby, K. J.; Conry, R. R. Org. Lett. 2005, 7, 3505. (d) Katz, J. L.; Geller, B. J.; Conry, R. R. Org. Lett. 2006, 8, 2755. (e) Maes, W.; Van Rossom, W.; Van Hecke, K.; Van Meervelt, L.; Dehaen, W. Org. Lett. 2006, 8, 4161. (f) Hao, E.; Fronczek, F. R.; Vicente, M. G. H. J. Org. Chem. 2006, 71, 1233. (g) Chambers, R. D.; Hoskin, P. R.; Kenwright, A. R.; Khalil, A.; Richmond, P.; Sandford, G.; Yufit, D. S.; Howard, J. A. K. Org. Biomol. Chem. 2003, 2137. (h) Chambers, R. D.; Hoskin, P. R.; Khalil, A.; Richmond, P.; Sandford, G.; Yufit, D. S.; Howard, J. A. K. J. Fluorine Chem. 2002, 116, 19. (i) Li, X. H.; Upton, T. G.; Gibb, C. L. D.; Gibb, B. C. J. Am. Chem. Soc. 2003, 125, 650. (j) Yang, F.; Yan, L.-W.; Ma, K.-Y.; Yang, L.; Li, J.-H.; Chen, L.-J.; You, J.-S. Eur. J. Org. Chem. 2006, 1109. (k) Wang, Q.-Q.; Wang, D.-X.; Ma, H.-W.; Wang, M.-X. Org. Lett. **2006**, *8*, 5967. (l) Wang, Q.-Q.; Wang, D.-X.; Zheng, Q.-Y.; Wang, M.-X. Org. Lett. 2007, 9, 2847. (m) Katz, J. L.; Geller, B. J.; Foster, P. D. Chem. Commun. 2007, 1026. (n) Zhang, C.; Chen, C.-F. J. Org. Chem. 2007, 72, 3880.

Katz^{4b-d} and others^{4e-h,j,n} reported the preparation of symmetrically substituted oxacalix[4] aromatics using a one-pot reaction method. Because of the different electronic nature of heteroatoms from carbon, the heteroatombridged calix-(hetero)aromatics exhibit interesting structural and molecular recognition properties. It has been shown that, due to the intrinsic nature of nitrogen that can adopt sp^2 and/or sp^3 electronic configurations to form or not to form conjugation with its adjacent aromatic rings, azacalix[4]pyridine is able to preorganize into different conformational and cavity structures to interact with metal ions,^{5f} anions,^{5e} and both aromatic and aliphatic diols and monools.⁵¹ It has also been demonstrated that the cavity of 1,3-alternate aza- and/or oxacalix[2]arene[2]triazines can be regulated by using different combinations of heteroatoms^{4a} or varied substituents^{4k} on the bridging nitrogen atoms.

(5) For recent examples of nitrogen-bridged calixaromatics, see: (a) Ito, A.; Ono, Y.; Tanaka, K. New J. Chem. **1998**, 779. (b) Ito, A.; Ono, Y.; Tanaka, K. J. Org. Chem. **1999**, 64, 8236. (c) Miyazaki Kanbara, T.; Yamamoto, T. Tetrahedron Lett. **2002**, 43, 7945. (d) Wang, M.-X.; Zhang, X.-H.; Zheng, Q.-Y. Angew. Chem., Int. Ed. **2004**, 43, 838. (e) Gong, H.-Y.; Zhang, X.-H.; Wang, D.-X.; Ma, H.-W.; Zheng, Q.-Y.; Wang, M.-X. Chem. Eur. J. **2006**, 12, 9262. (f) Gong, H.-Y.; Zheng, Q.-Y.; Zhang, X.-H.; Wang, D.-X.; Wang, M.-X. Org. Lett. **2006**, 8, 4895. (g) Tsue, H.; Ishibashi, K.; Takahashi, H.; Tamura, R. Org. Lett. **2005**, 7, 11. (h) Fukushima, W.; Kanbara, T.; Yamamoto, T. Synlett **2005**, 19, 2931. (i) Selby, T. D.; Blackstock, S. C. Org. Lett. **1999**, 1, 2053. (j) Suzuki, Y.; Yanagi, T.; Kanbara, T.; Yamamoto, T. Synlett **2005**, 2, 263. (k) Ishibashi, K.; Tsue, H.; Tokita, S.; Matsui, K.; Takahashi, H.; Tamura, R. Org. Lett. **2006**, 8, 5991. (l) Gong, H.-Y.; Wang, D.-X.; Xiang, J.-F.; Zheng, Q.-Y.; Wang, M.-X. Chem. Eur. J. **2007**, 13, 7791. (m) Liu, S.-Q.; Wang, D.-X.; Zheng, Q.-Y.; Wang, M.-X. Chem. Commun. **2007**, 3856.

(6) For examples of other heteroatom-bridged calixaromatics, see: (a) König, B.; Rödel, M.; Bubenitschek, P.; Jones, P. G.; Thondorf, I. J. Org. Chem. **1995**, 60, 7406. (b) König, B.; Rödel, M.; Bubenitschek, P.; Jones, P. G. Angew. Chem., Int. Ed. **1995**, 34, 661. (c) Yoshida, M.; Goto, M.; Nakanishi, F. Organometallics **1999**, 18, 1465. (d) Avarvari, N.; Mezailles, N.; Ricard, L.; Le Floch, P.; Mathey, F. Science **1998**, 280, 1587. (e) Avarvari, N.; Maigrot, N.; Ricard, L.; Mathey, F.; Le Floch, P. Chem. Eur. J. **1999**, 5, 2109.

(7) (a) Gutsche, C. D. *Calixarenes*; The Royal Society of Chemistry : Cambridge, UK, 1989. (b) Gutsche, C. D. *Calixarenes Revisited*; The Royal Society of Chemistry : Cambridge, UK, 1998.

(8) (a) Mandolini, L.; Ungaro, R., Eds. *Calixarenes in Action*; Imperial College Press: London, UK, 2000. (b) Lumetta, G. J.; Rogers, R. D.; Gopalan, A. S. *Calixarenes for Separation*; American Chemical Society: Washington, DC, 2000.

(9) Asfari, Z.; Böhmer, V.; Harrowfield, J.; Vicens, J.; Saadioui, M., Eds.; *Calixarenes 2001*; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001.

(10) For reviews of calixpyrroles, see: (a) Gale, P. A.; Anzenbacher, P.; Sessler, J. L. *Coord. Chem. Rev.* **2001**, 222, 57. (b) Sliwa, W. *Heterocycles* **2002**, *57*, 169.

(11) (a) Král, V.; Gale, P. A.; Anzenbacher, P.; Jursiková, K.; Lynch, V.; Sessler, J. L. *Chem. Commun.* **1998**, 9. (b) Sessler, J. L.; Cho, W.-S.; Lynch, V.; Král, V. *Chem. Eur. J.* **2002**, *8*, 1134. (c) Newkome, G. R.; Joo, Y. J.; Fronczek, F. R. *J. Chem. Soc., Chem. Commun.* **1987**, 854.

(12) For recent examples, see: (a) Guillard, J.; Meth-Cohn, Ö.; Rees, C. W.; White, A. J. P.; Williams, D. J. Chem. Commun. 2002, 232. (b) Vogel, E.; Pohl, M.; Herrmann, A.; Wiss, T.; König, C.; Lex, J.; Gross, M.; Gisselbrecht, J. P. Angew. Chem., Int. Ed. Engl. 1996, 35, 1520. (c) StC. Black, D.; Craig, D. C.; Rezaie, R. Chem. Commun. 2002, 810. (d) Sessler, J. L.; Cho, W.-S.; Lynch, V.; Král, V Chem. Eur. J. 2002, 8, 1134. (e) Cafeo, G.; Kohnke, F. H.; La Torre, G. L.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 2000, 39, 1496. (f) Cafeo, G.; Kohnke, F. H.; La Torre, G. L.; Parisi, M. F.; Nascone, R. P.; White, A. J. P.; Williams, D. J. Chem. Eur. J. 2002, 8, 3148. (g) Cafeo, G.; Garozzo, D.; Kohnke, F. H.; Pappalardo, S.; Parisi, M. F.; Nascone, R. P.; Williams, D. J. Chem. 2004, 60, 1895. (h) Kumar, S.; Paul, D.; Singh, H. Adv. Heterocycl. Chem. 2005, 89, 65.

(13) (a) Yang, H.-B.; Wang, D.-X.; Wang, Q.-Q.; Wang, M.-X. J. Org. Chem. 2007, 72, 3757. (b) Hou, B.-Y.; Wang, D.-X.; Yang, H.-B.; Zheng, Q.-Y.; Wang, M.-X. J. Org. Chem. 2007, 72, 5218. (c) Hou, B.-Y.; Zheng, Q.-Y.; Wang, D.-X.; Wang, M.-X. Tetrahedron 2007, 63, 10801.

While the study of the preparation of smaller macrocyclic heteroatom-bridged calix [n] aromatics (n = 4) has been fruitful,^{3–6} the synthesis of larger macrocycle homologues has remained largely unexplored.¹⁴ The oligomerizations between 1,3-phenylenediamine derivatives and 1,3-dibromobenzene derivatives^{5h} and oligomerization of *N*-methyl(3bromo)aniline,^{5b} for example, have been reported to give a mixture of azacalix[n]arene compounds in very low yields. Azacalix[n]pyridine (n > 6) derivatives were obtained in extremely low yield from condensation between 2,6-bis(ptolyamino)pyridine and 2,6-dibromopyridine or oligomerization of 2-bromo-6-(p-tolylamino)pyridine.^{5j} When we^{5e,m} studied the synthesis of azacalix[4]- and -[5]pyridines using 3 + 1 and 3 + 2 fragment coupling approaches, azacalix[8]and -[10]pyridines were obtained, respectively, in addition to the target molecules. Following the same stepwise 3 + 1strategy, Tsue reported the synthesis of azacalix[8]arene derivative in good yield.^{5k} Our continuing interest in the synthesis of heteroatom-bridged calixaromatics led us to undertake the current study. We report herein the fragment coupling synthesis of azacalix[n]pyridines of various macrocyclic ring sizes (n = 6-9) and their complexation with fullerenes C_{60} and C_{70} .

Retrosynthetically, the disconnection of large macrocyclic azacalixpyridines (n = 6-9) can lead to two pieces of fragments either of similar sizes or of very different sizes. To achieve synthetic efficiency, a convergent fragment coupling approach using two fragments of similar sizes was pursued. Illustrated in Scheme 1 are the preparation of different types of diamine and dibromide fragments. Starting with 2,6-dibromopyridine **1** and methylamine **2**, reiterative aromatic nucleophilic substitution reactions afforded α, ω -dibrominated and α, ω -diaminated linear oligomers. It is worth noting that, except for the elevated reaction temperatures, the preparations were very practical. They were carried out in a large scale and in high yield. Besides, they required no expensive reagents or catalysts.

We started our investigation with the synthesis of methylazacalix[7]pyridine by macrocyclic cross coupling reaction between α, ω -dibrominated linear tetramer 6 and α, ω -diaminated linear trimer 10. The reaction was systematically examined in terms of palladium catalyst, phosphine ligand, solvent, and reaction temperature. As summarized in Table 1, $Pd_2(dba)_3$ appeared as a better catalyst than $PdCl_2$ and $Pd(OAC)_2$ (entries 1-3), while dppp was superior than other ligands such as dppe, $P(c-Hex)_3$, and DPEphos (entries 3-6). The reaction was also sensitive toward the solvent and temperature used. This has been exemplified by a higher chemical yield of the product obtained in refluxing toluene than in other solvents including 1,4-xylene, 1,4-dioxane, and THF (entries 3 and 7-9) or in toluene but at lower temperature (entries 3, 10, and 11). It is interesting to note that while the catalyst loading did not seem critical in determining the chemical yield of the product (see the Supporting Information), the concentration of the substrate affected the formation of the product (entries 3 and 12-15).

⁽¹⁴⁾ Vale, M.; Pink, M.; Rajca, S.; Rajca, A. J. Org. Chem. 2008, 73, 27.

Scheme 1. Synthesis of α, ω -Dibrominated and α, ω -Diaminated Linear Oligomers

Table 1. Synthesis of Methylazacalix[7]pyridine 12^{a}

entry	catalyst (mol %)/ligand (mol %)/solvent	yield $(\%)^b$
1	PdCl ₂ (20)/dppp (20)/toluene	29
2	Pd(OAc) ₂ (20)/dppp (20)/toluene	23
3	Pd ₂ (dba) ₃ (10)/dppp (20)/toluene	37
4	Pd ₂ (dba) ₃ (10)/dppe (20)/toluene	26
5	Pd ₂ (dba) ₃ (10)/P(c-Hex) ₃ (40)/toluene	30
6	Pd ₂ (dba) ₃ (10)/DPEphos (20)/toluene	30
7	Pd ₂ (dba) ₃ (10)/dppp (20)/1,4-xylene	30
8	Pd ₂ (dba) ₃ (10)/dppp (20)/1,4-dioxane	34
9^c	Pd ₂ (dba) ₃ (10)/dppp (20)/THF	29
10^d	Pd ₂ (dba) ₃ (10)/dppp (20)/toluene (70 °C)	26
11^e	Pd ₂ (dba) ₃ (10)/dppp (20)/toluene (90 °C)	33
12^{f}	Pd ₂ (dba) ₃ (10)/dppp (20)/toluene	30
13^g	Pd ₂ (dba) ₃ (10)/dppp (20)/toluene	30
14^h	Pd ₂ (dba) ₃ (10)/dppp (20)/toluene	20
15^i	Pd ₂ (dba) ₃ (10)/dppp (20)/toluene	20

^{*a*} Concentration of substrate **10** was 2.5 × 10⁻³ M. ^{*b*} Isolated yield. ^{*c*} Reaction time was 10 h. ^{*d*} Reaction temperature was 70 °C. ^{*e*} Reaction temperature was 90 °C. ^{*f*} Concentration of substrate **10** was 1.25 × 10⁻³ M. ^{*g*} Concentration of substrate **10** was 5 × 10⁻³ M. ^{*h*} Concentration of substrate **10** was 7.5 × 10⁻³ M. ^{*i*} Concentration of substrate **10** was 10 × 10⁻³ M.

Thus, under the conditions using 10 mol % of Pd₂(dba)₃, 20 mol % of dppp, and 3 equiv of NaOBu^{*t*}, refluxing of substrates **6** (2.75 × 10⁻³ M) and **10** (2.5 × 10⁻³ M) in toluene for 8 h afforded methylazacalix[7]pyridine **12** in 37% yield (entry 3).

The macrocyclic coupling reaction was applicable to the synthesis of other large azacalix[n]pyridine compounds **13–15** (Table 2). Applying the same optimal conditions for the synthesis of methylazacalix[7]pyridine **12**, for example, methylazacalix[6]pyridine **13** was obtained in 31% yield from the reaction of a dibrominated linear trimer **9** with a diaminated linear trimer **10** (entry 1, Table 2). Reactions between larger fragments such as tetramers **6** and **7**, and **11**

Fable 2. Synthesis of Methylazacalix[n]	pyridines ^e
--	------------------------

	Pd ₂ (dibromide to + diamine	dba) ₃ /dppp/Na Iluene, reflux, i		N- Me 2-15	n
entry	dibromide	diamine	product	n	yield $(\%)^b$
1	9	10	13	6	31
2	9	7	12	7	36
3	6	10	12	7	37
4	6	7	14	8	40
5	11	7	15	9	40
^a For reaction conditions, see entry 3, Table 1. ^b Isolated yield.					

and **7** led to the formation of giant macrocyclic ring products methylazacalix[8]pyridine **14** and methylazacalix[9]pyridine **15**, respectively, in 40% yield (entries 4 and 5, Table 2). It should be noted that methylazacalix[7]pyridine **12** was also prepared from the reaction of a dibrominated trimer **9** and a diaminated tetramer **7**, albeit in a slightly lower yield (entry 2, Table 2).

The structure of all large macrocyclic azacalixpyridines synthesized was established on the basis of their spectroscopic data and microanalysis (see the Supporting Information). The single crystal of 12 grew in dichloromethane solution by slow evaporation of the solvent, and its X-ray molecular structure, which was depicted in Figure 1, allowed unambiguous determination of the macrocyclic ring structure. Being different from the solid state structure of azacalix[8]and -[10]pyridines,^{5e,m} one of the methyl groups on the bridging nitrogen atoms of 12 was directed toward the middle of the cavity (Figure 1). It is also noteworthy that azacalix-[n] pyridine homologues showed interesting UV-vis spectral properties in solution (see the Supporting Information). The wavelength and the coefficient of absorption are listed in Table 3. For comparison, UV-vis spectroscopic data of 2,6bis(methylamino)pyridine 8, 2-(methylamino)pyridine 19, 2-[N-methyl-N-(pyridin-2-yl)amino]pyridine 20, and 2,6-

Figure 1. X-ray structure of methylazacalix[7]pyridine 12.

bis[N-methyl-N-(pyridin-2-yl)amino]pyridine 21 are also included. While azacalix[7]- and -[9]pyridines gave two absorption bands (entries 4 and 6), all other macrocyclic compounds showed one strong absorption band ($\epsilon > 10^4$ $cm^{-1} M^{-1}$). Noticeably, with the increase of macrocyclic ring size, the wavelength of the maximum absorption band of azacalix[n]pyridines increased from 311 nm (n = 4) to 327-329 nm (n = 5, 6), 341 nm (n = 7, 8), and 348-349nm (n = 9, 10) (Table 3). This implied the difference of the major conjugation segments in each macrocyclic ring compounds. The exhibition of other strong absorption bands at longer wavelength for azacalix[7]pyridine 12 ($\lambda_{max} = 382$ nm) and azacalix[9]pyridine 15 ($\lambda_{max} = 390$ nm) suggested the occurrence of a more extensive conjugation system in these compounds.

Table 3. UV–Vis Spectroscopic Data of azacalix[*n*]pyridines^{*a*}

entry	compds	λ_{max} (nm)	$\epsilon \ ({ m cm}^{-1} { m M}^{-1})$
1	methylazacalix[4]pyridine 16	311	2.28×10^4
2	methylazacalix[5]pyridine 17	327	$4.76 imes 10^4$
3	methylazacalix[6]pyridine 13	329	$4.89 imes 10^4$
4	methylazacalix[7]pyridine 12	341	$6.51 imes 10^4$
		382	$1.94 imes 10^4$
5	methylazacalix[8]pyridine 14	341	$8.54 imes 10^4$
6	methylazacalix[9]pyridine 15	349	$8.64 imes 10^4$
		390	$3.06 imes 10^4$
7	methylazacalix[10]pyridine 18	348	$1.20 imes 10^5$
8	2,6-bis(methylamino)pyridine 8	314	$1.03 imes 10^4$
9^b	2-(methylamino)pyridine 19	304	$4.18 imes 10^3$
	2-[N-methyl-N-(pyridin-2-yl)		
10^b	amino]pyridine 20	309	1.41×10^4
	2,6-bis[N-methyl-N-(pyridin-2-yl)		
11^b	amino]pyridine 21	338	$2.33 imes 10^4$
^{<i>a</i>} UV–vis spectra were measured in toluene solution (8 \times 10 ⁻⁶ M) at			
298 K. ^b UV-vis spectra were measured in toluene solution $(3 \times 10^{-5} \text{ M})$			

at 298 K.

Large macrocyclic methylazacalix[n]pyridines are powerful host molecules able to interact with fullerenes. Fluorescence titration and the Job's plot experiments (see the Supporting Information) showed that all methylazacalix[*n*-]pyridines (n = 6-9) synthesized formed a 1:1 complex with fullerene guests C₆₀ and C₇₀, and their association constants $K_{a}^{5d,5e,15}$ were summarized in Table 4. The results for the

Table 4. Association constants for the 1:1 complexation of methylazacalix[n]pyridines with fullerenes C₆₀ and C₇₀.

n	$K_{ m a}$ (1:1 complexation with $ m C_{60}$)	$K_{\rm a} (1:1 \text{ complexation} \ { m with} C_{70})$
4		
5	$(2.60 \pm 0.11) \times 10^4$	$(1.17 \pm 0.03) imes 10^5$
6	$(6.62 \pm 0.22) imes 10^4$	$(6.24 \pm 0.19) imes 10^4$
7	$(3.30 \pm 0.08) imes 10^4$	$(7.23 \pm 0.19) imes 10^4$
8	$(4.60 \pm 0.16) imes 10^4$	$(1.09 \pm 0.02) imes 10^5$
9	$(3.10 \pm 0.08) imes 10^4$	$(8.23 \pm 0.25) imes 10^4$
10	$(3.03 \pm 0.08) imes 10^4$	$(1.30 \pm 0.03) imes 10^5$
a Asso	ciation contants were calculated	on the fluoroscence titration data

with the Hyperquad 2000 program.15

azacalix[5]-. complexation of azacalix[4]-, and azacalix[10]pyridines^{5f,m} with fullerenes C₆₀ and C₇₀ were also included for comparison. As revealed by the results in Table 4, except for methylazacalix[4]pyridine, a small macrocycle, which did not interact at all with fullerene guests, all large macrocyclic azacalix[n]pyridine (n = 5-10) hosts exhibited a strong ability to form 1:1 complexes with C₆₀ and C₇₀. In most cases, the synthetic hosts showed higher binding ability toward C_{70} than toward C_{60} . The association constants were around $10^4 - 10^5$ M⁻¹. To the best of our knowledge, they represented the strongest monomacrocyclic hosts in complexation with C_{60} and C_{70} .^{5d,e}

In summary, we have synthesized large macrocyclic methylazacalix [n] pyridines (n = 6-9) effectively using the Pd-catalyzed fragment coupling strategy. The synthetic macrocycles are powerful hosts to form 1:1 complexes with fullerenes C_{60} and C_{70} , giving the association constants ranging from 3×10^4 to 1×10^5 M⁻¹. Applications of large azacalix[n]pyridines are actively investigated and will be reported in due course.

Acknowledgment. We thank the NNSFC, MOST, and CAS for financial support.

Supporting Information Available: Experimental details, ¹H and ¹³C NMR of **12–15**, and X-ray molecular structure of 12 (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

OL800840M

^{(15) (}a) Gans, P.; Sabatini, A.; Vacca, A. Talanta 1996, 43, 1739. (b) Hyperquad2003 software, Protonic Software, http://www.hyperquad-.co.uk